Matching Items MCQs for Sub-Topics of Topic 10: Calculus
Limits: Introduction and Evaluation Techniques
Question 1. Match the following concepts with their descriptions:
(i) Concept of a Limit
(ii) Left Hand Limit ($\lim\limits_{x \to a^-} f(x)$)
(iii) Right Hand Limit ($\lim\limits_{x \to a^+} f(x)$)
(iv) Existence of a Limit
(v) Indeterminate Form
(a) The function approaches this value as $x$ approaches $a$ from values greater than $a$.
(b) The value that $f(x)$ approaches as $x$ gets arbitrarily close to $a$, but not necessarily equal to $a$.
(c) Occurs when direct substitution yields expressions like $0/0$, $\infty/\infty$, $0 \cdot \infty$, etc.
(d) Requires the left and right hand limits to be equal and finite.
(e) The function approaches this value as $x$ approaches $a$ from values less than $a$.
Answer:
Question 2. Match the following limits with appropriate evaluation techniques:
(i) $\lim\limits_{x \to 2} (x^3 - 5x + 1)$
(ii) $\lim\limits_{x \to 3} \frac{x^2 - 9}{x - 3}$
(iii) $\lim\limits_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$
(iv) $\lim\limits_{x \to 0} \frac{\sin(2x)}{x}$
(v) $\lim\limits_{x \to 1} \frac{x-1}{\sqrt{x^2+3} - 2}$
(a) Rationalization of the denominator
(b) Direct Substitution
(c) Factorization
(d) Using Standard Limit Formulas ($\lim\limits_{x \to 0} \frac{\sin kx}{x} = k$)
(e) Rationalization of the numerator
Answer:
Question 3. Match the following limits with their values:
(i) $\lim\limits_{x \to 1} \frac{x^2 - 1}{x - 1}$
(ii) $\lim\limits_{x \to 0} \frac{\sqrt{1+x} - 1}{x}$
(iii) $\lim\limits_{x \to 0} \frac{|x|}{x}$
(iv) $\lim\limits_{x \to 2} (x+5)$
(v) $\lim\limits_{x \to 0} \frac{\sin(4x)}{x}$
(a) 7
(b) Does not exist
(c) 1/2
(d) 2
(e) 4
Answer:
Question 4. Match the following functions with their left-hand limit at $x=0$:
(i) $f(x) = \begin{cases} x^2+1 & , & x \leq 0 \\ x-1 & , & x > 0 \end{cases}$
(ii) $f(x) = |x|$
(iii) $f(x) = \frac{|x|}{x}$
(iv) $f(x) = \lfloor x \rfloor$
(v) $f(x) = \sin x$
(a) 0
(b) 1
(c) -1
(d) Does not exist
(e) -1 (for $\lfloor x \rfloor$ as $x \to 0^-$)
Answer:
Question 5. Match the following functions with their right-hand limit at $x=1$:
(i) $f(x) = \begin{cases} x+1 & , & x < 1 \\ 2-x & , & x \geq 1 \end{cases}$
(ii) $f(x) = \frac{1}{x-1}$
(iii) $f(x) = \lfloor x \rfloor$
(iv) $f(x) = \frac{x^2-1}{x-1}$
(v) $f(x) = |x-1|$
(a) 0
(b) 1
(c) 2
(d) $\infty$
(e) Undefined
Answer:
Limits: Properties, Theorems, and Standard Results
Question 1. Match the following limit properties with their statements (assume $\lim\limits_{x \to a} f(x) = L$ and $\lim\limits_{x \to a} g(x) = M$, $L, M \in \mathbb{R}$):
(i) Sum Rule
(ii) Product Rule
(iii) Quotient Rule
(iv) Constant Multiple Rule
(v) Power Rule for Limits ($\lim\limits_{x \to a} (f(x))^n$)
(a) $c L$
(b) $L^n$
(c) $L/M$ (if $M \neq 0$)
(d) $L+M$
(e) $L \cdot M$
Answer:
Question 2. Match the following standard limits with their values:
(i) $\lim\limits_{x \to 0} \frac{\sin x}{x}$
(ii) $\lim\limits_{x \to 0} \frac{e^x - 1}{x}$
(iii) $\lim\limits_{x \to 0} \frac{\log_e(1+x)}{x}$
(iv) $\lim\limits_{x \to \infty} (1 + \frac{1}{x})^x$
(v) $\lim\limits_{x \to 0} \frac{a^x - 1}{x}$ ($a>0$)
(a) $e$
(b) 1
(c) $\log_e a$
(d) 1
(e) 1
Answer:
Question 3. Match the following trigonometric limits with their values:
(i) $\lim\limits_{x \to 0} \frac{\tan x}{x}$
(ii) $\lim\limits_{x \to 0} \frac{1 - \cos x}{x^2}$
(iii) $\lim\limits_{x \to 0} x \cdot \text{cosec } x$
(iv) $\lim\limits_{x \to 0} \frac{\sin ax}{\sin bx}$ ($a, b \neq 0$)
(v) $\lim\limits_{x \to 0} \frac{1 - \cos(2x)}{x^2}$
(a) 1
(b) a/b
(c) 1/2
(d) 1
(e) 2
Answer:
Question 4. Match the following limit expressions with the standard result they relate to after substitution:
(i) $\lim\limits_{x \to a} \frac{x^n - a^n}{x - a}$
(ii) $\lim\limits_{x \to 0} \frac{\sin(kx)}{x}$
(iii) $\lim\limits_{x \to 0} \frac{e^{kx} - 1}{x}$
(iv) $\lim\limits_{x \to 0} \frac{\log_e(1+kx)}{x}$
(v) $\lim\limits_{x \to \infty} (1 + \frac{k}{x})^x$
(a) $e^k$
(b) $n a^{n-1}$
(c) $k$
(d) $k$
(e) $k$
Answer:
Question 5. Match the following descriptions with the theorem names:
(i) Guarantees the limit of a function is squeezed between two other functions with the same limit.
(ii) States that if a function is continuous on $[a,b]$, differentiable on $(a,b)$, and $f(a)=f(b)$, there is $c \in (a,b)$ where $f'(c)=0$.
(iii) States that if a function is continuous on $[a,b]$ and differentiable on $(a,b)$, there is $c \in (a,b)$ where $f'(c) = \frac{f(b)-f(a)}{b-a}$.
(iv) Relates the derivative of an integral with a variable upper limit to the integrand.
(v) Provides a method to evaluate definite integrals using antiderivatives.
(a) Fundamental Theorem of Calculus (Part 2)
(b) Rolle's Theorem
(c) Fundamental Theorem of Calculus (Part 1)
(d) Squeeze Play Theorem (Sandwich Theorem)
(e) Lagrange's Mean Value Theorem
Answer:
Continuity of a Function
Question 1. Match the type of discontinuity with its description:
(i) Removable Discontinuity
(ii) Jump Discontinuity
(iii) Infinite Discontinuity
(iv) Continuity at a point
(v) Continuity on an open interval
(a) The left and right hand limits exist but are not equal.
(b) The limit exists, but the function value is different or undefined at the point.
(c) The limit is infinite at the point.
(d) The limit exists, the function value is defined, and they are equal.
(e) The function is continuous at every point in the interval.
Answer:
Question 2. Match the following functions with their continuity properties at $x=0$:
(i) $f(x) = x^2 + \sin x$
(ii) $f(x) = |x|$
(iii) $f(x) = \frac{1}{x}$
(iv) $f(x) = \frac{\sin x}{x}$ (with $f(0)=1$)
(v) $f(x) = \lfloor x \rfloor$
(a) Continuous
(b) Continuous
(c) Infinite discontinuity
(d) Removable discontinuity (if $f(0)$ were undefined)
(e) Jump discontinuity
Answer:
Question 3. Match the function composition with its continuity property given $f$ and $g$ are continuous functions:
(i) $f(g(x))$ where $g$ is continuous at $a$ and $f$ is continuous at $g(a)$
(ii) $|f(x)|$ where $f$ is continuous at $a$
(iii) $f(x) + g(x)$ where $f, g$ are continuous at $a$
(iv) $f(x)/g(x)$ where $f, g$ are continuous at $a$
(v) $\sqrt{f(x)}$ where $f$ is continuous at $a$ and $f(a) \geq 0$
(a) Continuous at $a$ if $g(a) \neq 0$
(b) Continuous at $a$
(c) Continuous at $a$
(d) Continuous at $a$
(e) Continuous at $a$
Answer:
Question 4. Match the condition for continuity on an interval:
(i) Continuity on an open interval $(a, b)$
(ii) Continuity on a closed interval $[a, b]$
(iii) Right continuity at $a$
(iv) Left continuity at $b$ ($b>a$)
(v) Continuity at a point $c$ in $(a,b)$
(a) $\lim\limits_{x \to c} f(x) = f(c)$
(b) Continuous at every point in $(a, b)$
(c) Continuous on $(a, b)$ plus right continuity at $a$ and left continuity at $b$.
(d) $\lim\limits_{x \to a^+} f(x) = f(a)$
(e) $\lim\limits_{x \to b^-} f(x) = f(b)$
Answer:
Question 5. Match the function definition with the type of discontinuity at the given point:
(i) $f(x) = \frac{x^2-4}{x-2}$ at $x=2$
(ii) $f(x) = \begin{cases} x & , & x \neq 1 \\ 5 & , & x = 1 \end{cases}$ at $x=1$ ($\lim\limits_{x \to 1} f(x) = 1 \neq f(1)$)
(iii) $f(x) = \frac{1}{x-3}$ at $x=3$
(iv) $f(x) = \frac{|x|}{x}$ at $x=0$
(v) $f(x) = \tan x$ at $x=\pi/2$
(a) Jump Discontinuity
(b) Removable Discontinuity
(c) Infinite Discontinuity
(d) Removable Discontinuity (original function without redefined point)
(e) Infinite Discontinuity
Answer:
Differentiability and its Relation to Continuity
Question 1. Match the definition of the derivative component with the correct limit expression:
(i) Derivative $f'(a)$
(ii) Left Hand Derivative ($f'(a^-)$)
(iii) Right Hand Derivative ($f'(a^+)$)
(iv) Definition of derivative at $x=a$ using $x \to a$
(v) Differentiability at $x=a$
(a) $\lim\limits_{x \to a} \frac{f(x) - f(a)}{x - a}$
(b) $\lim\limits_{h \to 0^-} \frac{f(a+h) - f(a)}{h}$
(c) Requires $f'(a^-) = f'(a^+) =$ finite value.
(d) $\lim\limits_{h \to 0} \frac{f(a+h) - f(a)}{h}$
(e) $\lim\limits_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$
Answer:
Question 2. Match the function with its differentiability property at $x=0$:
(i) $f(x) = x^2$
(ii) $f(x) = |x|$
(iii) $f(x) = \lfloor x \rfloor$
(iv) $f(x) = \begin{cases} x \sin(1/x) & , & x \neq 0 \\ 0 & , & x = 0 \end{cases}$
(v) $f(x) = x|x|$
(a) Differentiable
(b) Not differentiable (continuous, sharp corner)
(c) Not differentiable (discontinuous)
(d) Not differentiable (continuous, oscillating slope)
(e) Differentiable
Answer:
Question 3. Match the statement about differentiability and continuity with its truth value:
(i) If a function is differentiable at a point, it is continuous at that point.
(ii) If a function is continuous at a point, it is differentiable at that point.
(iii) If a function is not continuous at a point, it is not differentiable at that point.
(iv) A function can have a vertical tangent at a point where it is continuous but not differentiable.
(v) The derivative is defined as the limit of the difference quotient.
(a) True
(b) False
(c) True
(d) True
(e) True
Answer:
Question 4. Match the function with its derivative from the first principle at $x=a$:
(i) $f(x) = c$
(ii) $f(x) = x$}
(iii) $f(x) = x^2$
(iv) $f(x) = x^3$
(v) $f(x) = \sin x$
(a) $\cos a$
(b) 0
(c) $2a$}
(d) 1
(e) $3a^2$}
Answer:
Question 5. Match the concept with its geometric interpretation related to differentiability:
(i) $f'(a)$
(ii) $f'(a) > 0$
(iii) $f'(a) < 0$
(iv) $f'(a) = 0$}
(v) $f'(a)$ is undefined (and $f$ is continuous at $a$)
(a) Tangent is horizontal
(b) Slope of the tangent at $(a, f(a))$
(c) Function is decreasing at $a$
(d) Sharp corner or cusp at $(a, f(a))$
(e) Function is increasing at $a$
Answer:
Differentiation: Basic Rules and Standard Formulas
Question 1. Match the basic differentiation rule with its formula:
(i) Power Rule
(ii) Product Rule
(iii) Quotient Rule
(iv) Sum Rule
(v) Constant Multiple Rule
(a) $(uv)' = u'v + uv'$
(b) $(u/v)' = (u'v - uv')/v^2$
(c) $(u+v)' = u' + v'$
(d) $(cu)' = c u'$
(e) $(x^n)' = nx^{n-1}$}
Answer:
Question 2. Match the function with its standard derivative:
(i) $\sin x$
(ii) $\cos x$
(iii) $\tan x$
(iv) $e^x$
(v) $\log_e x$
(a) $1/x$
(b) $\cos x$
(c) $-\sin x$
(d) $\sec^2 x$
(e) $e^x$
Answer:
Question 3. Match the function with its standard derivative:
(i) $\cot x$
(ii) $\sec x$
(iii) $\text{cosec } x$
(iv) $a^x$ ($a>0$)
(v) $\log_a x$ ($a>0, a \neq 1$)
(a) $a^x \log_e a$
(b) $\sec x \tan x$
(c) $- \text{cosec } x \cot x$
(d) $- \text{cosec}^2 x$
(e) $1/(x \log_e a)$
Answer:
Question 4. Match the expression with its derivative using basic rules:
(i) $x^2 \sin x$
(ii) $(x+1)/x^2$
(iii) $\cos x + e^x$
(iv) $5x^{10}$}
(v) $\sqrt{x}$
(a) $-\sin x + e^x$
(b) $50x^9$
(c) $1/(2\sqrt{x})$
(d) $2x \sin x + x^2 \cos x$
(e) $- (x+2)/x^3$}
Answer:
Question 5. Match the derivative expression with the rule that would be primarily used:
(i) $\frac{d}{dx}(f(x) + g(x))$
(ii) $\frac{d}{dx}(f(x)g(x))$
(iii) $\frac{d}{dx}(\frac{f(x)}{g(x)})$
(iv) $\frac{d}{dx}(x^n)$
(v) $\frac{d}{dx}(c)$
(a) Quotient Rule
(b) Sum Rule
(c) Constant Rule
(d) Power Rule
(e) Product Rule
Answer:
Differentiation Techniques: Chain Rule and Composite Functions
Question 1. Match the composite function $y=f(g(x))$ with the functions $f(u)$ and $u=g(x)$:
(i) $\sin(x^2)$
(ii) $(2x+1)^5$
(iii) $e^{\cos x}$
(iv) $\log_e(x^3+2)$
(v) $\sqrt{\tan x}$
(a) $f(u) = \sqrt{u}$, $u = \tan x$
(b) $f(u) = \sin u$, $u = x^2$
(c) $f(u) = u^5$, $u = 2x+1$
(d) $f(u) = e^u$, $u = \cos x$
(e) $f(u) = \log_e u$, $u = x^3+2$
Answer:
Question 2. Match the composite function with its derivative using the Chain Rule:
(i) $\sin(3x)$
(ii) $(x^2+1)^3$}
(iii) $e^{2x}$
(iv) $\log_e(5x)$
(v) $\cos(x^4)$
(a) $3 \sin^2(x^2+1) \cdot 2x$
(b) $3 \cos(3x)$
(c) $3(x^2+1)^2 \cdot 2x = 6x(x^2+1)^2$
(d) $1/x$}
(e) $2e^{2x}$
Answer:
Question 3. Match the function with the derivative expression using Chain Rule components:
(i) $y = f(g(x))$
(ii) $y = \sin(g(x))$
(iii) $y = e^{g(x)}$
(iv) $y = (g(x))^n$}
(v) $y = \log_e(g(x))$
(a) $\frac{1}{g(x)} \cdot g'(x)$
(b) $f'(g(x)) \cdot g'(x)$
(c) $e^{g(x)} \cdot g'(x)$
(d) $\cos(g(x)) \cdot g'(x)$
(e) $n(g(x))^{n-1} \cdot g'(x)$}
Answer:
Question 4. Match the applied rate of change with the derivative expression using the Chain Rule (R=Revenue, x=Sales, t=Time):
(i) Rate of change of Revenue w.r.t. Time
(ii) Marginal Revenue
(iii) Rate of change of Sales w.r.t. Time
(iv) Rate of change of Cost w.r.t. Time (C=Cost, x=Units, t=Time)
(v) Marginal Cost
(a) $R'(x)$
(b) $x'(t)$
(c) $C'(x)$
(d) $\frac{dR}{dx} \cdot \frac{dx}{dt}$
(e) $\frac{dC}{dx} \cdot \frac{dx}{dt}$
Answer:
Question 5. Match the composite function with its derivative:
(i) $\sin^2 x$
(ii) $\cos(2x)$
(iii) $\log_e(\tan x)$
(iv) $\sqrt{e^x}$
(v) $\tan^{-1}(x/2)$
(a) $e^x / (2\sqrt{e^x}) = \sqrt{e^x}/2$}
(b) $2 \sin x \cos x = \sin(2x)$
(c) $\frac{1}{1+(x/2)^2} \cdot (1/2) = \frac{1}{2(1+x^2/4)} = \frac{2}{4+x^2}$}
(d) $\cot x$}
(e) $-2 \sin(2x)$
Answer:
Differentiation Techniques: Implicit and Inverse Functions
Question 1. Match the implicit equation with its derivative $\frac{dy}{dx}$:
(i) $x^2 + y^2 = c^2$
(ii) $xy = c$
(iii) $x^3 + y^3 = 3xy$
(iv) $\sin y = x$
(v) $e^{xy} = c$
(a) $-y/x$
(b) $1/\cos y$}
(c) $\frac{y-x^2}{y^2-x}$
(d) $-x/y$
(e) $-y/x$
Answer:
Question 2. Match the inverse trigonometric function with its derivative:
(i) $\sin^{-1} x$
(ii) $\cos^{-1} x$
(iii) $\tan^{-1} x$
(iv) $\cot^{-1} x$
(v) $\sec^{-1} x$
(a) $-1/\sqrt{1-x^2}$
(b) $1/(1+x^2)$
(c) $-1/(1+x^2)$
(d) $1/(|x|\sqrt{x^2-1})$
(e) $1/\sqrt{1-x^2}$}
Answer:
Question 3. Match the derivative of the inverse function $\frac{dy}{dx}$ with the derivative of the original function $\frac{dx}{dy}$ where $y=f^{-1}(x)$ and $x=f(y)$:
(i) $\frac{dy}{dx}$
(ii) $f'(y)$
(iii) Derivative of $\sin^{-1} x$ at $x=1/2$
(iv) Derivative of $\tan^{-1} x$ at $x=1$
(v) Derivative of $\cos^{-1} x$ at $x=0$
(a) $1/f'(y)$
(b) $1/\frac{dx}{dy}$
(c) $1/\sqrt{1-(1/2)^2} = 1/\sqrt{3/4} = 2/\sqrt{3}$}
(d) $-1/\sqrt{1-0^2} = -1$}
(e) $1/(1+1^2) = 1/2$}
Answer:
Question 4. Match the expression with the simplified form before differentiation using inverse trig properties (for valid ranges):
(i) $\sin^{-1}(2x\sqrt{1-x^2})$
(ii) $\cos^{-1}(\frac{1-x^2}{1+x^2})$
(iii) $\tan^{-1}(\frac{2x}{1-x^2})$
(iv) $\sin^{-1} x + \cos^{-1} x$
(v) $\tan^{-1}(\frac{3x-x^3}{1-3x^2})$
(a) $3 \tan^{-1} x$
(b) $2 \sin^{-1} x$
(c) $2 \tan^{-1} x$
(d) $\pi/2$
(e) $2 \tan^{-1} x$
Answer:
Question 5. Match the function with its derivative:
(i) $\sin^{-1}(2x)
(ii) $\cos^{-1}(x^2)
(iii) $\tan^{-1}(\sqrt{x})$
(iv) $\cot^{-1}(1/x)$
(v) $\sec^{-1}(e^x)
(a) $\frac{1}{1+(\sqrt{x})^2} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}(1+x)}$
(b) $\frac{1}{\sqrt{1-(2x)^2}} \cdot 2 = \frac{2}{\sqrt{1-4x^2}}$
(c) $\frac{-1}{\sqrt{1-(x^2)^2}} \cdot 2x = \frac{-2x}{\sqrt{1-x^4}}$
(d) $\frac{1}{|e^x|\sqrt{(e^x)^2-1}} \cdot e^x = \frac{e^x}{e^x\sqrt{e^{2x}-1}} = \frac{1}{\sqrt{e^{2x}-1}}$
(e) $\frac{-1}{1+(1/x)^2} \cdot (-1/x^2) = \frac{1}{x^2(1+1/x^2)} = \frac{1}{x^2+1}$}
Answer:
Differentiation Techniques: Logarithmic and Parametric
Question 1. Match the function type with the primary differentiation technique:
(i) $y = f(x)^{g(x)}$
(ii) $y = (f(x)g(x)h(x)) / (k(x)l(x))$
(iii) $y = \sin(x^2)$
(iv) $x = f(t), y = g(t)$
(v) $x^2+y^2 = c$
(a) Chain Rule
(b) Logarithmic Differentiation
(c) Parametric Differentiation
(d) Implicit Differentiation
(e) Logarithmic Differentiation
Answer:
Question 2. Match the function with its derivative using logarithmic differentiation:
(i) $y = x^x$
(ii) $y = (\sin x)^x$
(iii) $y = x^{\sin x}$
(iv) $y = (\log_e x)^x$
(v) $y = x^{\log_e x}$
(a) $x^{\sin x} (\cos x \log_e x + \sin x/x)$
(b) $x^x (1 + \log_e x)$
(c) $(\sin x)^x (\log_e \sin x + x \cot x)$
(d) $(\log_e x)^x (1/\log_e x + \log_e(\log_e x))$
(e) $x^{\log_e x} (2 \log_e x / x)$
Answer:
Question 3. Match the parametric equations with the steps to find $\frac{dy}{dx}$:
(i) $x = f(t), y = g(t)$
(ii) Find $\frac{dx}{dt}$
(iii) Find $\frac{dy}{dt}$
(iv) Calculate $\frac{dy}{dx}$ formula
(v) Calculate $\frac{d^2 y}{dx^2}$ formula
(a) $f'(t)$
(b) $\frac{dy/dt}{dx/dt}$
(c) $\frac{d}{dt}(\frac{dy}{dx}) / \frac{dx}{dt}$
(d) $g'(t)$
(e) Given definition
Answer:
Question 4. Match the parametric equations with their derivative $\frac{dy}{dx}$:
(i) $x = t^2, y = t^3$
(ii) $x = \cos \theta, y = \sin \theta$
(iii) $x = at, y = a/t$
(iv) $x = e^t, y = e^{-t}$
(v) $x = a \cos \theta, y = b \sin \theta$
(a) $-\frac{b}{a} \cot \theta$
(b) $\frac{3}{2} t$
(c) $-1/t^2$
(d) $-\cot \theta$
(e) $-e^{-t}/e^t = -e^{-2t}$}
Answer:
Question 5. Match the type of function with the most suitable differentiation technique among the options:
(i) $y = x^5 + \sin x$
(ii) $y = \sin(x^5)$
(iii) $y = x^{\sin 5}$
(iv) $y = x^{\sin x}$
(v) $y = \frac{\sin x \cos x}{\sqrt{x^2+1}}$
(a) Standard Rules (Sum/Power/Trig)
(b) Logarithmic Differentiation
(c) Chain Rule
(d) Logarithmic Differentiation (or Quotient/Product/Chain)
(e) Standard Rule (Power)
Answer:
Higher Order Derivatives
Question 1. Match the function with its second derivative:
(i) $x^3$
(ii) $\sin x$
(iii) $\cos x$
(iv) $e^x$
(v) $\log_e x$
(a) $-\sin x$
(b) $6x$
(c) $-1/x^2$
(d) $-\cos x$
(e) $e^x$
Answer:
Question 2. Match the function with its third derivative:
(i) $x^4$
(ii) $\sin x$
(iii) $e^{2x}$
(iv) $\log_e x$}
(v) $x^2$
(a) 0
(b) $-\cos x$
(c) $6x$}
(d) $8e^{2x}$
(e) $2/x^3$}
Answer:
Question 3. Match the statement about higher order derivatives:
(i) $\frac{d^2 y}{dx^2}$
(ii) Point of inflection
(iii) Concave upwards
(iv) Concave downwards
(v) Derivative of a polynomial of degree $n$ ($n$-th derivative)
(a) Where concavity changes (often $y''=0$ or undefined)
(b) $y'' < 0$
(c) Second derivative
(d) $y'' > 0$
(e) A constant
Answer:
Question 4. Match the function with its $n$-th derivative:
(i) $y = e^{ax}$
(ii) $y = x^m$ ($n \leq m$ integer)
(iii) $y = \sin(ax+b)$
(iv) $y = \cos(ax+b)$
(v) $y = \frac{1}{x}$}
(a) $a^n e^{ax}$
(b) $a^n \sin(ax+b + n\pi/2)$}
(c) $m!/(m-n)! x^{m-n}$}
(d) $(-1)^n n! / x^{n+1}$}
(e) $a^n \cos(ax+b + n\pi/2)$}
Answer:
Question 5. Match the function with its second derivative:
(i) $x \sin x$
(ii) $x e^x$
(iii) $x \log_e x$
(iv) $\sin(x^2)$
(v) $(x+1)^3$}
(a) $e^x(x+2)$}
(b) $6(x+1)$}
(c) $\cos(x^2) - 4x^2 \sin(x^2)$}
(d) $1/x$}
(e) $2 \cos x - x \sin x$}
Answer:
Mean Value Theorems
Question 1. Match the theorem condition or conclusion with the theorem name:
(i) $f(a) = f(b)$
(ii) $f'(c) = 0$
(iii) $f'(c) = (f(b)-f(a))/(b-a)$
(iv) Applies if $f$ is continuous on $[a, b]$ and differentiable on $(a, b)$.
(v) Applies if $f$ is continuous on $[a, b]$, differentiable on $(a, b)$, and $f(a)=f(b)$.
(a) Condition for Rolle's Theorem
(b) Conclusion of Rolle's Theorem
(c) Conclusion of Lagrange's Mean Value Theorem
(d) Conditions for Lagrange's Mean Value Theorem
(e) Conditions for Rolle's Theorem
Answer:
Question 2. Match the geometric interpretation with the theorem name:
(i) Tangent is horizontal somewhere between $a$ and $b$ if $f(a)=f(b)$.
(ii) Tangent is parallel to the chord joining $(a, f(a))$ and $(b, f(b))$ somewhere between $a$ and $b$.
(iii) The instantaneous rate of change equals the average rate of change over the interval $[a, b]$.
(iv) If $f(a)=f(b)$, the slope of the tangent at some point is zero.
(v) The slope of the tangent at some point equals the slope of the secant line connecting the endpoints.
(a) Geometric interpretation of Rolle's Theorem
(b) Geometric interpretation of Lagrange's Mean Value Theorem
(c) Interpretation of $f'(c) = \frac{f(b)-f(a)}{b-a}$
(d) Geometric interpretation of Rolle's Theorem
(e) Geometric interpretation of Lagrange's Mean Value Theorem
Answer:
Question 3. Match the function and interval with the applicability of Rolle's Theorem:
(i) $f(x) = x^2-4$ on $[-2, 2]$
(ii) $f(x) = |x|$ on $[-1, 1]$
(iii) $f(x) = \frac{1}{x}$ on $[1, 2]$
(iv) $f(x) = \sin x$ on $[0, \pi]$
(v) $f(x) = \tan x$ on $[0, \pi]$
(a) Not applicable (not continuous)
(b) Applicable
(c) Not applicable (not differentiable in interval)
(d) Not applicable (f(a) != f(b))
(e) Applicable
Answer:
Question 4. Match the function and interval with the value(s) of $c$ guaranteed by Rolle's Theorem:
(i) $f(x) = x^2 - 2x$ on $[0, 2]$
(ii) $f(x) = \sin x$ on $[0, \pi]$
(iii) $f(x) = x^2 - 4x + 3$ on $[1, 3]$
(iv) $f(x) = \cos x$ on $[0, 2\pi]$
(v) $f(x) = (x-1)(x-2)$ on $[1, 2]$
(a) $\pi/2, 3\pi/2$
(b) $1.5$ (midpoint)
(c) 1
(d) 2
(e) $\pi/2$
Answer:
Question 5. Match the function and interval with the value of $c$ guaranteed by Lagrange's Mean Value Theorem:
(i) $f(x) = x^2$ on $[0, 2]$
(ii) $f(x) = \log_e x$ on $[1, e]$
(iii) $f(x) = e^x$ on $[0, 1]$
(iv) $f(x) = x^3$ on $[1, 2]$
(v) $f(x) = x^2+2x$ on $[0, 1]$
(a) $2c = (2^2-0^2)/(2-0) = 4/2=2$, $c=1$. (Matches (i))
(b) $1/c = (\log_e e - \log_e 1)/(e-1) = (1-0)/(e-1) = 1/(e-1)$, $c=e-1$. (Matches (ii))
(c) $e^c = (e^1-e^0)/(1-0) = (e-1)/1 = e-1$, $c=\log_e(e-1)$. (Matches (iii))
(d) $3c^2 = (2^3-1^3)/(2-1) = (8-1)/1 = 7$, $c^2 = 7/3$, $c=\sqrt{7/3}$. (Matches (iv))
(e) $f'(x) = 2x+2$. $f'(c) = 2c+2 = (f(1)-f(0))/(1-0) = ((1^2+2(1)) - (0^2+2(0)))/1 = (3-0)/1 = 3$. $2c+2=3$, $2c=1$, $c=1/2$. (Matches (v))
Answer:
Applications of Derivatives: Rate of Change and Marginals
Question 1. Match the quantity with its rate of change with respect to time $t$ (assuming the quantity depends on a variable $x$ which depends on $t$):
(i) Area of a circle $A = \pi r^2$
(ii) Volume of a sphere $V = \frac{4}{3}\pi r^3$
(iii) Surface area of a cube $S = 6 s^2$
(iv) Volume of a cube $V = s^3$
(v) Perimeter of a square $P = 4s$
(a) $\frac{dV}{dt} = 3s^2 \frac{ds}{dt}$
(b) $\frac{dP}{dt} = 4 \frac{ds}{dt}$
(c) $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$
(d) $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$
(e) $\frac{dS}{dt} = 12s \frac{ds}{dt}$
Answer:
Question 2. Match the economic concept with its derivative definition (C=Cost, R=Revenue, P=Profit, x=Units):
(i) Marginal Cost
(ii) Marginal Revenue
(iii) Marginal Profit
(iv) Rate of change of Cost w.r.t. Units
(v) Rate of change of Revenue w.r.t. Units
(a) $R'(x)$
(b) $C'(x)$
(c) $P'(x)$
(d) $C'(x)$
(e) $R'(x)$
Answer:
Question 3. Match the total cost function with its marginal cost:
(i) $C(x) = 500 + 10x$
(ii) $C(x) = 1000 + 5x + 2x^2$
(iii) $C(x) = x^3 - 3x + 100$
(iv) $C(x) = 25x$
(v) $C(x) = 0.01x^2 + 2x + 50$
(a) $0.02x + 2$
(b) $3x^2 - 3$
(c) $5 + 4x$
(d) 10
(e) 25
Answer:
Question 4. Match the total revenue function with its marginal revenue:
(i) $R(x) = 100x$
(ii) $R(x) = 10x - x^2$
(iii) $R(x) = 5x^2 + 20x$
(iv) $R(x) = x(100 - 0.5x) = 100x - 0.5x^2$
(v) $R(x) = 100 + 50x - x^2/4$
(a) $100 - x/2$
(b) $10 - 2x$
(c) 100
(d) $10x + 20$
(e) $50 - x/2$}
Answer:
Question 5. Match the related rates problem scenario with the relevant geometric formula and derivative:
(i) Water flowing into a cylindrical tank (Volume V, radius r, height h)
(ii) Expanding circle (Area A, radius r)
(iii) Deflating spherical balloon (Volume V, radius r)
(iv) Ladder sliding down a wall (x=dist from wall, y=height on wall)
(v) Growing equilateral triangle (Area A, side s)
(a) $A = \pi r^2$, $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$
(b) $V = \frac{4}{3}\pi r^3$, $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$
(c) $x^2 + y^2 = L^2$, $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$
(d) $V = \pi r^2 h$, $\frac{dV}{dt} = \pi r^2 \frac{dh}{dt}$ (if r is constant)
(e) $A = \frac{\sqrt{3}}{4} s^2$, $\frac{dA}{dt} = \frac{\sqrt{3}}{2} s \frac{ds}{dt}$
Answer:
Applications of Derivatives: Tangents, Normals, Approximations, Errors
Question 1. Match the concept with the related formula or description:
(i) Slope of Tangent at $x_0$
(ii) Equation of Tangent at $(x_0, y_0)$
(iii) Slope of Normal at $x_0$ (if tangent slope is $m_T \neq 0$)
(iv) Equation of Normal at $(x_0, y_0)$ (if tangent slope is $m_T \neq 0$)
(v) Approximate change in $y=f(x)$ ($\Delta y$) for small $\Delta x$
(a) $y - y_0 = (-1/m_T)(x - x_0)$
(b) $f'(x_0)$
(c) $y - y_0 = m_T(x - x_0)$
(d) $-1/f'(x_0)$
(e) $dy = f'(x) \Delta x$
Answer:
Question 2. Match the function and point with the slope of the tangent:
(i) $y = x^2$ at $x=2$
(ii) $y = \sin x$ at $x=0$
(iii) $y = e^x$ at $x=1$
(iv) $y = \log_e x$ at $x=1$
(v) $y = x^3 - x$ at $x=1$
(a) $e$
(b) 1
(c) $3(1)^2 - 1 = 2$
(d) 4
(e) 1
Answer:
Question 3. Match the type of error with its definition:
(i) Absolute Error in $y=f(x)$
(ii) Relative Error in $y=f(x)$
(iii) Percentage Error in $y=f(x)$
(iv) Measured quantity
(v) Error in measurement
(a) $\Delta x$ (or $dx$)
(b) $|\Delta y|$ (or $|dy| = |f'(x) \Delta x|$) for a small $\Delta x$
(c) $x$
(d) $\frac{|\Delta y|}{y}$ (or $\frac{|dy|}{y}$) for a small $\Delta x$
(e) $\frac{|\Delta y|}{y} \times 100\%$ (or $\frac{|dy|}{y} \times 100\%$) for a small $\Delta x$
Answer:
Question 4. Match the quantity calculation formula with the approximate error using differentials, given error $\Delta x$ in variable $x$:
(i) Area of square $A=x^2$
(ii) Volume of cube $V=x^3$}
(iii) Area of circle $A=\pi x^2$
(iv) Perimeter of square $P=4x$
(v) Volume of sphere $V=\frac{4}{3}\pi x^3$
(a) $dP = 4 \Delta x$
(b) $dA = 2\pi x \Delta x$
(c) $dA = 2x \Delta x$
(d) $dV = 3x^2 \Delta x$
(e) $dV = 4\pi x^2 \Delta x$
Answer:
Question 5. Match the percentage error in the base quantity measurement with the approximate percentage error in the derived quantity calculation:
(i) % Error in side of square (s) -> % Error in Area (s$^2$)
(ii) % Error in radius of circle (r) -> % Error in Area ($\pi$r$^2$)
(iii) % Error in edge of cube (s) -> % Error in Volume (s$^3$)
(iv) % Error in radius of sphere (r) -> % Error in Volume ($\frac{4}{3}\pi$r$^3$)
(v) % Error in length of pendulum (L) -> % Error in Time Period ($T \propto \sqrt{L}$)
(a) $2 \times (\% \text{ Error in r})$
(b) $1/2 \times (\% \text{ Error in L})$
(c) $3 \times (\% \text{ Error in s})$
(d) $2 \times (\% \text{ Error in s})$
(e) $3 \times (\% \text{ Error in r})$
Answer:
Applications of Derivatives: Monotonicity (Increasing/Decreasing Functions)
Question 1. Match the definition with the type of monotonic function:
(i) For $x_1 < x_2$, $f(x_1) < f(x_2)$
(ii) For $x_1 < x_2$, $f(x_1) \leq f(x_2)$
(iii) For $x_1 < x_2$, $f(x_1) > f(x_2)$
(iv) For $x_1 < x_2$, $f(x_1) \geq f(x_2)$
(v) A function that is either increasing or decreasing (or constant) on an interval
(a) Strictly Decreasing
(b) Increasing (Non-decreasing)
(c) Monotonic
(d) Strictly Increasing
(e) Decreasing (Non-increasing)
Answer:
Question 2. Match the condition on the first derivative with the type of monotonicity on an interval:
(i) $f'(x) > 0$
(ii) $f'(x) \geq 0$
(iii) $f'(x) < 0$
(iv) $f'(x) \leq 0$
(v) $f'(x) = 0$
(a) Decreasing
(b) Strictly Increasing
(c) Constant
(d) Strictly Decreasing
(e) Increasing
Answer:
Question 3. Match the function with the correct interval of strict increase (or the whole domain if applicable):
(i) $e^x$
(ii) $x^2$
(iii) $\log_e x$
(iv) $\sin x$ in $[0, \pi]$
(v) $\tan x$ in $(-\pi/2, \pi/2)$
(a) $(0, \infty)$
(b) $(0, \pi/2)$
(c) $(-\infty, \infty)$
(d) $(-\pi/2, \pi/2)$
(e) $(0, \infty)$
Answer:
Question 4. Match the function with the correct interval of strict decrease (or the whole domain if applicable):
(i) $e^{-x}$
(ii) $-x^3$
(iii) $\cos x$ in $[0, \pi]$
(iv) $\cot^{-1} x$
(v) $x^2$
(a) $(-\infty, 0)$
(b) $(0, \pi)$
(c) $(-\infty, \infty)$
(d) $(-\infty, \infty)$
(e) $[0, \pi]$
Answer:
Question 5. Match the function $f(x) = x^3 - 3x$ with the intervals of its monotonicity:
(i) $f'(x) = 3x^2-3$
(ii) Critical points
(iii) Interval where $f'(x) > 0$
(iv) Interval where $f'(x) < 0$
(v) Interval of strict increase
(a) $(-1, 1)$
(b) $x=\pm 1$
(c) $(-\infty, -1) \cup (1, \infty)$
(d) $(-\infty, -1) \cup (1, \infty)$
(e) Derivative of $f(x)$
Answer:
Applications of Derivatives: Extrema (Maxima and Minima)
Question 1. Match the term with its definition or property:
(i) Local Maximum
(ii) Local Minimum
(iii) Critical Point
(iv) Absolute Maximum
(v) Absolute Minimum
(a) The smallest value of the function on its entire domain or specified interval.
(b) Where $f'(c)=0$ or $f'(c)$ is undefined (and $c$ is in domain).
(c) The largest value of the function on its entire domain or specified interval.
(d) $f(c)$ is the largest value in a small neighborhood around $c$.
(e) $f(c)$ is the smallest value in a small neighborhood around $c$.
Answer:
Question 2. Match the First Derivative Test result at a critical point $x=c$ with the conclusion:
(i) $f'(x)$ changes from + to - as $x$ increases through $c$
(ii) $f'(x)$ changes from - to + as $x$ increases through $c$
(iii) $f'(x)$ does not change sign as $x$ increases through $c$
(iv) $f(c)$ is defined and $f'(x)$ changes sign at $c$
(v) $f(c)$ is defined and $f'(x)$ does not change sign at $c$
(a) No local extremum at $c$ (possibly inflection point)
(b) Local Minimum at $c$
(c) Local Extremum at $c$ (Local Max or Min)
(d) Local Maximum at $c$
(e) No local extremum at $c$ (possibly inflection point)
Answer:
Question 3. Match the Second Derivative Test result at a critical point $x=c$ where $f'(c)=0$ with the conclusion:
(i) $f''(c) > 0$
(ii) $f''(c) < 0$
(iii) $f''(c) = 0$
(iv) The function is concave up at $c$
(v) The function is concave down at $c$
(a) Local Maximum at $c$
(b) Test is inconclusive
(c) Local Minimum at $c$ (from Second Derivative Test)
(d) Corresponds to $f''(c) < 0$
(e) Corresponds to $f''(c) > 0$
Answer:
Question 4. Match the function with its critical point(s):
(i) $x^2 - 4x + 5$
(ii) $x^3 - 3x + 2$
(iii) $|x|$
(iv) $x^3$}
(v) $x^4$}
(a) $x=\pm 1$
(b) $x=0$ (derivative undefined)
(c) $x=0$ (derivative is zero)
(d) $x=2$
(e) $x=0$ (derivative is zero)
Answer:
Question 5. Match the optimization problem scenario with the quantity to be optimized:
(i) Find two numbers with fixed sum, max product.
(ii) Find dimensions of rectangle with fixed perimeter, max area.
(iii) Find dimensions of box with fixed volume, min surface area.
(iv) Minimize cost function $C(x)$.
(v) Maximize profit function $P(x) = R(x) - C(x)$.
(a) Area of the rectangle
(b) Product of the two numbers
(c) Profit function $P(x)$
(d) Surface area of the box
(e) Cost function $C(x)$
Answer:
Introduction to Integrals: Indefinite Integral
Question 1. Match the concept related to integrals with its definition or notation:
(i) Antiderivative of $f(x)$
(ii) Indefinite Integral of $f(x)$
(iii) Constant of Integration
(iv) Integrand
(v) Integration symbol
(a) $\int$
(b) The function being integrated, $f(x)$ in $\int f(x) dx$
(c) A function $F(x)$ such that $F'(x) = f(x)$
(d) The family of all antiderivatives, $F(x) + C$
(e) The arbitrary constant $C$ in the indefinite integral
Answer:
Question 2. Match the function with its indefinite integral:
(i) $x^n$ ($n \neq -1$)
(ii) $1/x$
(iii) $\sin x$
(iv) $\cos x$
(v) $e^x$
(a) $e^x + C$
(b) $\log_e |x| + C$
(c) $\frac{x^{n+1}}{n+1} + C$
(d) $\sin x + C$
(e) $-\cos x + C$
Answer:
Question 3. Match the function with its indefinite integral:
(i) $\sec^2 x$
(ii) $\text{cosec}^2 x$
(iii) $\sec x \tan x$
(iv) $\text{cosec } x \cot x$
(v) $a^x$ ($a>0, a \neq 1$)
(a) $\sec x + C$
(b) $\tan x + C$
(c) $-\cot x + C$
(d) $\frac{a^x}{\log_e a} + C$
(e) $-\text{cosec } x + C$
Answer:
Question 4. Match the operation with its inverse operation (in calculus):
(i) Differentiation
(ii) Finding an Antiderivative
(iii) Integrating $f(x)$
(iv) Differentiating $F(x)+C$
(v) Differentiating $\int f(x) dx$
(a) $f(x)$
(b) Integration (finding antiderivative)
(c) $f'(x)$
(d) Differentiation
(e) Antidifferentiation
Answer:
Question 5. In Applied Maths, match the marginal function with the method to find the total function:
(i) Marginal Cost $C'(x)$
(ii) Marginal Revenue $R'(x)$
(iii) Rate of population growth $P'(t)$
(iv) Velocity $v(t)$ (rate of change of position $s(t)$)
(v) Acceleration $a(t)$ (rate of change of velocity $v(t)$)
(a) Integrate w.r.t. $x$ to find Total Cost $C(x)$
(b) Integrate w.r.t. $x$ to find Total Revenue $R(x)$
(c) Integrate w.r.t. $t$ to find Population $P(t)$
(d) Integrate w.r.t. $t$ to find Position $s(t)$
(e) Integrate w.r.t. $t$ to find Velocity $v(t)$
Answer:
Integration Techniques: Substitution and By Parts
Question 1. Match the integral with the appropriate integration technique:
(i) $\int x \cos x dx$
(ii) $\int x \cos(x^2) dx$
(iii) $\int \frac{x}{x^2+1} dx$
(iv) $\int x^2 e^x dx$
(v) $\int \log_e x dx$
(a) Substitution (using $u=x^2$)
(b) Integration by Parts
(c) Substitution (using $u=x^2+1$)
(d) Integration by Parts (multiple times)
(e) Integration by Parts
Answer:
Question 2. Match the integral with a suitable substitution $u=$:
(i) $\int \sin^3 x \cos x dx$
(ii) $\int \frac{e^{\tan^{-1} x}}{1+x^2} dx$
(iii) $\int \frac{\log_e x}{x} dx$
(iv) $\int \frac{x^2}{(x^3+1)^4} dx$
(v) $\int \sqrt{a^2-x^2} dx$
(a) $\log_e x$
(b) $x^3+1$
(c) $\sin x$
(d) $a \sin \theta$ (Trig substitution)
(e) $\tan^{-1} x$}
Answer:
Question 3. Match the integral with a suitable choice for $u$ and $dv$ in integration by parts $\int u dv$ (using LIATE):
(i) $\int x \sin x dx$
(ii) $\int x^2 e^x dx$
(iii) $\int \log_e x dx$
(iv) $\int x \log_e x dx$
(v) $\int e^x \cos x dx$
(a) $u=\log_e x, dv=x dx$
(b) $u=x^2, dv=e^x dx$
(c) $u=x, dv=\sin x dx$
(d) $u=\log_e x, dv=dx$
(e) $u=\cos x, dv=e^x dx$ (or vice versa, requires repeating IP)
Answer:
Question 4. Match the integral form with the standard result: (assuming $f'(x)$ is the derivative of $f(x)$)
(i) $\int [f(x)]^n f'(x) dx$
(ii) $\int \frac{f'(x)}{f(x)} dx$
(iii) $\int e^x (f(x) + f'(x)) dx$
(iv) $\int \sin(f(x)) f'(x) dx$
(v) $\int e^{f(x)} f'(x) dx$
(a) $\frac{[f(x)]^{n+1}}{n+1} + C$ ($n \neq -1$)
(b) $e^{f(x)} + C$
(c) $e^x f(x) + C$
(d) $\log_e |f(x)| + C$
(e) $-\cos(f(x)) + C$
Answer:
Question 5. Match the integral with its result after applying the specified technique:
(i) $\int \frac{x}{\sqrt{x^2+1}} dx$ (Substitution $u=x^2+1$)
(ii) $\int x \cos x dx$ (Integration by Parts)
(iii) $\int \tan x dx$ (Substitution $u=\cos x$)
(iv) $\int e^x (\sec x + \sec x \tan x) dx$ (Standard Form)
(v) $\int x e^{x^2} dx$ (Substitution $u=x^2$)
(a) $e^x \sec x + C$
(b) $\frac{1}{2} e^{x^2} + C$
(c) $\sqrt{x^2+1} + C$
(d) $x \sin x + \cos x + C$
(e) $-\log_e |\cos x| + C$
Answer:
Integration Techniques: Partial Fractions and Special Forms
Question 1. Match the rational function denominator factorisation with the correct partial fraction decomposition form:
(i) $(ax+b)(cx+d)$ (distinct linear factors)
(ii) $(ax+b)^n$ (repeated linear factor)
(iii) $(x^2+ax+b)$ (irreducible quadratic factor)
(iv) $(x^2+ax+b)^n$ (repeated irreducible quadratic factor)
(v) $(ax+b)(x^2+cx+d)$ (linear and irreducible quadratic factors)
(a) $\frac{A}{ax+b} + \frac{Bx+C}{x^2+cx+d}$
(b) $\frac{A}{ax+b} + \frac{B}{cx+d}$
(c) $\frac{A}{ax+b} + \frac{B}{(ax+b)^2} + \dots + \frac{N}{(ax+b)^n}$
(d) $\frac{Ax+B}{x^2+ax+b}$
(e) $\frac{Ax+B}{x^2+ax+b} + \dots + \frac{Px+Q}{(x^2+ax+b)^n}$
Answer:
Question 2. Match the standard integral form with its result (assume $a>0$):
(i) $\int \frac{dx}{a^2 + x^2}$
(ii) $\int \frac{dx}{a^2 - x^2}$
(iii) $\int \frac{dx}{x^2 - a^2}$
(iv) $\int \frac{dx}{\sqrt{a^2 - x^2}}$
(v) $\int \frac{dx}{\sqrt{x^2 + a^2}}$
(a) $\frac{1}{2a} \log_e |\frac{x-a}{x+a}| + C$
(b) $\log_e |x + \sqrt{x^2 + a^2}| + C$
(c) $\frac{1}{a} \tan^{-1}(\frac{x}{a}) + C$
(d) $\sin^{-1}(\frac{x}{a}) + C$
(e) $\frac{1}{2a} \log_e |\frac{a+x}{a-x}| + C$
Answer:
Question 3. Match the standard integral form with its result (assume $a>0$):
(i) $\int \frac{dx}{\sqrt{x^2 - a^2}}$
(ii) $\int \sqrt{a^2 - x^2} dx$}
(iii) $\int \sqrt{x^2 - a^2} dx$}
(iv) $\int \sqrt{x^2 + a^2} dx$}
(v) $\int \frac{dx}{x \sqrt{x^2 - a^2}}$
(a) $\frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2} \log_e |x + \sqrt{x^2 - a^2}| + C$
(b) $\log_e |x + \sqrt{x^2 - a^2}| + C$
(c) $\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}(\frac{x}{a}) + C$
(d) $\frac{1}{a} \sec^{-1}(\frac{x}{a}) + C$
(e) $\frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2} \log_e |x + \sqrt{x^2 + a^2}| + C$
Answer:
Question 4. Match the integral with the required algebraic manipulation before integrating using standard forms:
(i) $\int \frac{dx}{x^2 + 4x + 5}$
(ii) $\int \frac{dx}{\sqrt{x^2 - 6x + 10}}$
(iii) $\int \sqrt{x^2 + 2x + 2} dx$
(iv) $\int \frac{dx}{\sqrt{3 - 2x - x^2}}$
(v) $\int \frac{dx}{1 + \sin x}$
(a) Complete the square to get $\sqrt{a^2 - (x+b)^2}$ form
(b) Complete the square to get $x^2+a^2$ form in denominator
(c) Use $t = \tan(x/2)$ substitution
(d) Complete the square to get $\sqrt{(x-b)^2 + a^2}$ form
(e) Complete the square to get $\sqrt{(x-b)^2 + a^2}$ form under sqrt
Answer:
Question 5. Match the integral of a rational trigonometric function with a suitable substitution:
(i) $\int \frac{dx}{a+b\cos x}$
(ii) $\int \frac{dx}{a+b\sin x}$
(iii) $\int \frac{dx}{a\sin x + b\cos x}$
(iv) $\int \frac{dx}{\sin x}$
(v) $\int \sec x dx$
(a) Use $t = \tan(x/2)$
(b) Use $t = \tan(x/2)$
(c) Use $t = \tan(x/2)$
(d) Use $t = \tan(x/2)$ or multiply by $\frac{\sec x + \tan x}{\sec x + \tan x}$}
(e) Use $t = \tan(x/2)$ or multiply by $\frac{\text{cosec } x - \cot x}{\text{cosec } x - \cot x}$}
Answer:
Definite Integrals: Definition and Fundamental Theorems
Question 1. Match the concept with its definition or notation:
(i) Definite Integral $\int_a^b f(x) dx$
(ii) Lower limit of integration
(iii) Upper limit of integration
(iv) Integrand in a definite integral
(v) Geometric meaning of $\int_a^b f(x) dx$ for $f(x) \geq 0$
(a) The area under the curve from $a$ to $b$
(b) $b$
(c) $f(x)$
(d) The limit of a Riemann sum
(e) $a$}
Answer:
Question 2. Match the Fundamental Theorem of Calculus statement part with the corresponding Theorem:
(i) If $F(x) = \int_a^x f(t) dt$, then $F'(x) = f(x)$.
(ii) If $F$ is an antiderivative of $f$, then $\int_a^b f(x) dx = F(b) - F(a)$.
(iii) $\frac{d}{dx} \int_a^x f(t) dt$
(iv) $[F(x)]_a^b$
(v) Connects differential calculus and integral calculus.
(a) Fundamental Theorem of Calculus (Part 2 - Evaluation)
(b) Fundamental Theorem of Calculus (Part 1)
(c) Fundamental Theorem of Calculus (Part 1)
(d) Fundamental Theorem of Calculus (Part 2 - Evaluation)
(e) The entire Fundamental Theorem of Calculus
Answer:
Question 3. Match the definite integral with its value using the Fundamental Theorem:
(i) $\int_0^1 x dx$
(ii) $\int_1^2 x^2 dx$
(iii) $\int_0^{\pi/2} \sin x dx$
(iv) $\int_0^1 e^x dx$
(v) $\int_1^e \frac{1}{x} dx$
(a) 1
(b) $e-1$
(c) $7/3$}
(d) 1
(e) 1/2$}
Answer:
Question 4. Match the property of definite integrals with its statement:
(i) Change of limits
(ii) Zero width interval
(iii) Splitting the interval
(iv) Constant multiple
(v) Sum/Difference
(a) $\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx$
(b) $\int_a^b k f(x) dx = k \int_a^b f(x) dx$
(c) $\int_a^a f(x) dx = 0$
(d) $\int_a^b f(x) dx = -\int_b^a f(x) dx$
(e) $\int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$
Answer:
Question 5. Match the definite integral with its geometric representation for $f(x) \geq 0$ on $[a, b]$:
(i) $\int_a^b f(x) dx$
(ii) $\int_0^4 x dx$
(iii) $\int_0^2 x^2 dx$
(iv) $\int_0^1 e^x dx$
(v) $\int_0^\pi \sin x dx$
(a) Area under $y=e^x$ from 0 to 1
(b) Area under $y=x$ from 0 to 4
(c) Area under the curve $y=f(x)$ from $x=a$ to $x=b$ and above the x-axis.
(d) Area under $y=\sin x$ from 0 to $\pi$
(e) Area under $y=x^2$ from 0 to 2
Answer:
Definite Integrals: Evaluation and Properties
Question 1. Match the definite integral with its value after evaluation:
(i) $\int_0^1 (x^2+x) dx$
(ii) $\int_{-1}^1 x^3 dx$
(iii) $\int_0^1 \frac{1}{1+x^2} dx$
(iv) $\int_{-1}^1 |x| dx$
(v) $\int_0^{\pi/2} \sin^2 x dx$
(a) 1
(b) $\pi/4$
(c) 0
(d) 5/6
(e) $\pi/4$
Answer:
Question 2. Match the definite integral with a suitable substitution $u=$ (and corresponding limits):
(i) $\int_0^1 x e^{x^2} dx$
(ii) $\int_0^{\pi/2} \sin^3 x \cos x dx$
(iii) $\int_0^1 \frac{\tan^{-1} x}{1+x^2} dx$}
(iv) $\int_1^e \frac{(\log_e x)^2}{x} dx$}
(v) $\int_0^1 \sqrt{1-x^2} dx$}
(a) $x = \sin \theta$ (limits $0$ to $\pi/2$)
(b) $\tan^{-1} x$ (limits $0$ to $\pi/4$)
(c) $\sin x$ (limits $0$ to 1)
(d) $x^2$ (limits $0$ to 1)
(e) $\log_e x$ (limits $0$ to 1)
Answer:
Question 3. Match the property of definite integrals over symmetric intervals with the condition on the function:
(i) $\int_{-a}^a f(x) dx = 0$
(ii) $\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx$
(iii) $f(-x) = -f(x)$
(iv) $f(-x) = f(x)$
(v) Integral over $[-a, a]$ is zero
(a) $f(x)$ is an even function
(b) $f(x)$ is an odd function
(c) $f(x)$ is an odd function
(d) $f(x)$ is an even function
(e) $f(x)$ is an odd function (if the integral is defined)
Answer:
Question 4. Match the definite integral with the property useful for its evaluation:
(i) $\int_0^{\pi/2} \log_e(\tan x) dx$
(ii) $\int_{-\pi/2}^{\pi/2} x \cos x dx$
(iii) $\int_0^{2\pi} |\sin x| dx$
(iv) $\int_0^\pi x \sin x dx$
(v) $\int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$
(a) $\int_0^a f(x) dx = \int_0^a f(a-x) dx$
(b) Integral of an odd function over a symmetric interval $[-a, a]$
(c) Split the interval and use properties of modulus function
(d) Integration by parts or $\int_0^a x f(x) dx = \int_0^a (a-x) f(a-x) dx$
(e) $\int_0^a f(x) dx = \int_0^a f(a-x) dx$
Answer:
Question 5. Match the definite integral with its value:
(i) $\int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$
(ii) $\int_{-\pi/2}^{\pi/2} \sin x dx$
(iii) $\int_0^{\pi/2} \log_e(\tan x) dx$
(iv) $\int_0^\pi x \sin x dx$
(v) $\int_0^1 \frac{dx}{1+x^2}$
(a) $\pi$
(b) $\pi/4$
(c) 0
(d) 0
(e) $\pi/4$
Answer:
Applications of Integrals: Area Calculation
Question 1. Match the region bounded by the curve, x-axis, and lines with the definite integral representing its area (assuming $y \geq 0$ in the region):
(i) $y = x^2$, x-axis, $x=0$, $x=2$
(ii) $y = \sin x$, x-axis, $x=0$, $x=\pi$
(iii) $y = \sqrt{x}$, x-axis, $x=0$, $x=4$
(iv) $y = e^x$, x-axis, $x=0$, $x=1$
(v) $y = x$, x-axis, $x=0$, $x=5$
(a) $\int_0^4 \sqrt{x} dx$
(b) $\int_0^2 x^2 dx$
(c) $\int_0^\pi \sin x dx$
(d) $\int_0^1 e^x dx$
(e) $\int_0^5 x dx$}
Answer:
Question 2. Match the region bounded by the curves with the definite integral representing its area (assume the first curve is the upper one in the relevant interval):
(i) $y = x, y = x^2$ (between intersections)
(ii) $y = 2x, y = x$ (from $x=0$ to $x=1$)
(iii) $y = 4, y = x^2$ (between intersections)
(iv) $y = \sqrt{x}, y = x^2$ (between intersections)
(v) $y = e^x, y = e^{-x}$ (from $x=0$ to $x=1$)
(a) $\int_0^1 (e^x - e^{-x}) dx$
(b) $\int_0^1 (x - x^2) dx$
(c) $\int_0^1 (2x - x) dx$
(d) $\int_{-2}^2 (4 - x^2) dx$
(e) $\int_0^1 (\sqrt{x} - x^2) dx$
Answer:
Question 3. Match the region with its calculated area value:
(i) Area under $y=x^2$ from 0 to 2
(ii) Area under $y=\sin x$ from 0 to $\pi$
(iii) Area between $y=x$ and $y=x^2$ from $x=0$ to $x=1$
(iv) Area between $y=x^2$ and $y=4$
(v) Area of circle $x^2+y^2=a^2$
(a) $\pi a^2$
(b) $1/6$}
(c) 2
(d) $8/3$}
(e) $32/3$}
Answer:
Question 4. Match the accumulation concept in Applied Maths with the relevant integral form:
(i) Total production from rate $r(t)$ over $[t_1, t_2]$
(ii) Change in velocity from acceleration $a(t)$ over $[t_1, t_2]$
(iii) Displacement from velocity $v(t)$ over $[t_1, t_2]$
(iv) Total amount flowed from flow rate $r(t)$ over $[t_1, t_2]$
(v) Change in total revenue from marginal revenue $R'(x)$ over $[x_1, x_2]$
(a) $\int_{t_1}^{t_2} a(t) dt$
(b) $\int_{x_1}^{x_2} R'(x) dx$
(c) $\int_{t_1}^{t_2} r(t) dt$
(d) $\int_{t_1}^{t_2} v(t) dt$
(e) $\int_{t_1}^{t_2} r(t) dt$
Answer:
Question 5. Match the area region with the integral with respect to $y$:
(i) $x = y^2$, y-axis, $y=0$, $y=1$
(ii) $x = y$, y-axis, $y=0$, $y=2$ (triangle)
(iii) $x = y^2/4$, y-axis, $y=0$, $y=2$
(iv) $x^2+y^2 = a^2$, y-axis, $y=-a$, $y=a$ (right half-circle)
(v) $x = y^2$, $x = y$ (between intersections)
(a) $\int_0^1 (y - y^2) dy$
(b) $\int_0^1 y^2 dy$
(c) $\int_0^2 \frac{y^2}{4} dy$
(d) $\int_{-a}^a \sqrt{a^2 - y^2} dy$
(e) $\int_0^2 y dy$
Answer:
Differential Equations: Introduction and Formulation
Question 1. Match the differential equation with its order:
(i) $\frac{dy}{dx} = x^2 + y^2$
(ii) $\frac{d^2 y}{dx^2} + y = 0$
(iii) $(\frac{dy}{dx})^3 + y = x$
(iv) $\frac{d^3 y}{dx^3} + (\frac{d^2 y}{dx^2})^4 = x^5$
(v) $y' + y'' = y'''$}
(a) 2
(b) 3
(c) 1
(d) 3
(e) 1
Answer:
Question 2. Match the differential equation with its degree:
(i) $\frac{dy}{dx} = x^2 + y^2$
(ii) $(\frac{d^2 y}{dx^2})^3 + y = 0$
(iii) $\sqrt{1 + (\frac{dy}{dx})^2} = \frac{d^2 y}{dx^2}$
(iv) $(\frac{d^3 y}{dx^3}) + x (\frac{dy}{dx})^5 = 0$
(v) $y'' + (y')^4 = y^5$
(a) 1
(b) 3
(c) 2
(d) 1
(e) 1
Answer:
Question 3. Match the type of solution with its description:
(i) General Solution
(ii) Particular Solution
(iii) Singular Solution
(iv) Solution containing arbitrary constants equal to order
(v) Solution obtained by specific values of constants
(a) Cannot be obtained from the general solution
(b) Contains arbitrary constants
(c) Obtained using initial/boundary conditions
(d) General solution
(e) Particular solution
Answer:
Question 4. Match the family of curves with its differential equation:
(i) $y = mx + c$ (m, c arbitrary)
(ii) $y = mx$ (m arbitrary)
(iii) $y = ax^2$ (a arbitrary)
(iv) $x^2 + y^2 = r^2$ (r arbitrary)
(v) $(x-a)^2 + y^2 = a^2$ (a arbitrary, circles through origin with center on x-axis)
(a) $y = x \frac{dy}{dx}$
(b) $\frac{d^2 y}{dx^2} = 0$
(c) $y^2 - x^2 = 2xy \frac{dy}{dx}$
(d) $2y = x \frac{dy}{dx}$}
(e) $x + y \frac{dy}{dx} = 0$
Answer:
Question 5. Match the differential equation with its order and degree:
(i) $(\frac{dy}{dx})^2 + y = x$
(ii) $\frac{d^2 y}{dx^2} + x (\frac{dy}{dx})^3 = 0$
(iii) $\frac{d^3 y}{dx^3} + (\frac{d^2 y}{dx^2})^5 = y$
(iv) $\sqrt{y'} = y''$
(v) $y''' + (y'')^2 = y'$
(a) Order 3, Degree 1
(b) Order 1, Degree 2
(c) Order 2, Degree 2
(d) Order 3, Degree 1
(e) Order 2, Degree 1 (after squaring)
Answer:
Solving First Order Differential Equations
Question 1. Match the first-order differential equation form with its classification/solution method:
(i) $\frac{dy}{dx} = f(x) g(y)$
(ii) $\frac{dy}{dx} = f(\frac{y}{x})$
(iii) $\frac{dy}{dx} + P(x)y = Q(x)$
(iv) $\frac{dy}{dx} = \frac{ax+by+c}{Ax+By+C}$ ($aB \neq Ab$)
(v) $\frac{dy}{dx} = \frac{ax+by+c}{Ax+By+C}$ ($\frac{a}{A} = \frac{b}{B}$)
(a) Linear
(b) Homogeneous
(c) Reducible to Variable Separable (using $v=ax+by+c$ or similar)
(d) Reducible to Homogeneous (using $x=X+h, y=Y+k$)
(e) Variable Separable
Answer:
Question 2. Match the separable differential equation with the separated form for integration:
(i) $\frac{dy}{dx} = \frac{x^2}{y}$
(ii) $\frac{dy}{dx} = e^{x+y}$
(iii) $(1+x^2) dy - (1+y^2) dx = 0$
(iv) $\frac{dy}{dx} = y \cot x$
(v) $x dy + y dx = 0$}
(a) $\frac{dy}{y} = \cot x dx$
(b) $\frac{dy}{y} = -\frac{dx}{x}$
(c) $y dy = x^2 dx$
(d) $\frac{dy}{e^y} = e^x dx$
(e) $\frac{dy}{1+y^2} = \frac{dx}{1+x^2}$}
Answer:
Question 3. Match the homogeneous differential equation with the form after substitution $y=vx$ and simplification:
(i) $\frac{dy}{dx} = \frac{y}{x}$
(ii) $\frac{dy}{dx} = \frac{y^2-x^2}{xy}$
(iii) $\frac{dy}{dx} = \frac{x+y}{x}$
(iv) $\frac{dy}{dx} = \frac{x+2y}{x-y}$
(v) $\frac{dy}{dx} = \frac{y}{x} + \sin(y/x)$
(a) $x \frac{dv}{dx} = \sin v$
(b) $x \frac{dv}{dx} = \frac{1-v^2}{v} - v = \frac{1-2v^2}{v}$}
(c) $x \frac{dv}{dx} = \frac{1+2v}{1-v} - v = \frac{1+2v-v+v^2}{1-v} = \frac{v^2+v+1}{1-v}$}
(d) $x \frac{dv}{dx} = v/v - v = 1-v$}
(e) $x \frac{dv}{dx} = 1$}
Answer:
Question 4. Match the first-order differential equation with its general solution:
(i) $\frac{dy}{dx} = 2x$
(ii) $\frac{dy}{dx} = y$
(iii) $\frac{dy}{dx} = 1/x$
(iv) $\frac{dy}{dx} = \cos x$
(v) $\frac{dy}{dx} = e^x$
(a) $y = \sin x + C$
(b) $y = \log_e |x| + C$
(c) $y = e^x + C$
(d) $y = x^2 + C$
(e) $y = C e^x$}
Answer:
Question 5. Match the reducible homogeneous equation (Type $\frac{a}{A} = \frac{b}{B}$) with the substitution $v=$:
(i) $\frac{dy}{dx} = (x+y)^2$
(ii) $\frac{dy}{dx} = \frac{x+y+1}{x+y-1}$
(iii) $\frac{dy}{dx} = \sin(x-y)$
(iv) $\frac{dy}{dx} = \frac{2x+4y+1}{x+2y-1}$
(v) $\frac{dy}{dx} = \tan^2(x+y-5)$
(a) $x+y$
(b) $x-y$
(c) $x+y+1$ or $x+y-1$
(d) $x-y+2$ (Doesn't fit form)
(e) $x+2y+1$ or $x+2y-1$}
Answer:
Solving Linear Differential Equations
Question 1. Match the first-order differential equation with its standard form:
(i) $y' + xy = x^2$
(ii) $x y' + y = \sin x$
(iii) $(1+x^2) \frac{dy}{dx} + 2xy = 1/x$
(iv) $y dx - x dy = 0$ (Not linear in y)
(v) $\frac{dx}{dy} - x/y = y^2$}
(a) $\frac{dy}{dx} + \frac{2x}{1+x^2} y = \frac{1}{x(1+x^2)}$
(b) $\frac{dx}{dy} + (-1/y) x = y^2$}
(c) $\frac{dy}{dx} + x y = x^2$
(d) $\frac{dy}{dx} + (1/x) y = \sin x/x$}
(e) $\frac{dy}{dx} + (-y/x) = 0$
Answer:
Question 2. Match the linear differential equation $\frac{dy}{dx} + P(x)y = Q(x)$ with its integrating factor $e^{\int P(x) dx}$:
(i) $y' + y = x$
(ii) $y' + (1/x) y = x^2$
(iii) $y' + y \tan x = \sec x$
(iv) $y' - y = e^x$
(v) $y' + (2x/(x^2+1)) y = 1$}
(a) $e^x$
(b) $x$
(c) $\sec x$}
(d) $e^{-x}$
(e) $x^2+1$}
Answer:
Question 3. Match the linear differential equation $\frac{dy}{dx} + P(x)y = Q(x)$ with the equation after multiplying by the integrating factor, ready for integration:
(i) $y' + y = x$ (IF = $e^x$)
(ii) $y' + (1/x) y = x^2$ (IF = $x$)
(iii) $y' + y \tan x = \sec x$ (IF = $\sec x$)
(iv) $y' - y = e^x$ (IF = $e^{-x}$)
(v) $y' + (2x/(x^2+1)) y = 1$ (IF = $x^2+1$)
(a) $(y x)' = x^3$
(b) $(y e^x)' = x e^x$
(c) $(y \sec x)' = \sec^2 x$
(d) $(y e^{-x})' = 1$
(e) $(y (x^2+1))' = x^2+1$}
Answer:
Question 4. Match the equation $\frac{dx}{dy} + P(y)x = Q(y)$ with its integrating factor $e^{\int P(y) dy}$:
(i) $\frac{dx}{dy} + x = y$
(ii) $\frac{dx}{dy} - x = e^y$
(iii) $\frac{dx}{dy} + (1/y) x = y^2$
(iv) $\frac{dx}{dy} - 2y x = y^3$
(v) $\frac{dx}{dy} + x \cot y = \sin y$
(a) $e^{\int \cot y dy} = \sin y$}
(b) $e^{\int -1 dy} = e^{-y}$
(c) $e^{\int 1 dy} = e^y$
(d) $e^{\int (1/y) dy} = y$}
(e) $e^{\int -2y dy} = e^{-y^2}$}
Answer:
Question 5. Match the linear differential equation with its general solution:
(i) $y' + y = 0$
(ii) $y' = x$
(iii) $y' = y+1$
(iv) $y' + y/x = 0$
(v) $y' = e^x$
(a) $y = C e^x$}
(b) $y = x^2/2 + C$
(c) $y = C/x$}
(d) $y = -1 + C e^x$}
(e) $y = e^x + C$
Answer:
Differential Equations: Modeling and Applications
Question 1. Match the real-world phenomenon with the type of differential equation model it often uses:
(i) Simple Population Growth (unlimited resources)
(ii) Radioactive Decay
(iii) Compound Interest (continuous)
(iv) Newton's Law of Cooling (Temp difference $T-T_a$)
(v) Velocity of falling object with air resistance $\propto v$
(a) $\frac{dA}{dt} = rA$
(b) $\frac{dP}{dt} = kP$
(c) $\frac{dN}{dt} = -kN$
(d) $\frac{dT}{dt} = -k(T-T_a)$
(e) $m \frac{dv}{dt} = mg - kv$ (Linear DE in v)
Answer:
Question 2. Match the concept with the related parameter in a differential equation model:
(i) Growth rate constant
(ii) Decay constant
(iii) Ambient temperature
(iv) Carrying capacity (in logistic growth)
(v) Interest rate (continuous compound interest)
(a) $k$ in $\frac{dP}{dt} = kP$
(b) $k$ in $\frac{dN}{dt} = -kN$
(c) $T_a$ in $\frac{dT}{dt} = -k(T-T_a)$
(d) $M$ in $\frac{dP}{dt} = kP(M-P)$
(e) $r$ in $\frac{dA}{dt} = rA$
Answer:
Question 3. Match the initial value problem with its particular solution:
(i) $\frac{dy}{dx} = 2x, y(0)=3$
(ii) $\frac{dy}{dt} = -y, y(0)=5$
(iii) $\frac{dA}{dt} = 0.05A, A(0)=10000$
(iv) $\frac{dT}{dt} = -(T-20), T(0)=100$
(v) $\frac{dv}{dt} = 9.8, v(0)=0$
(a) $y(x) = x^2+3$
(b) $y(t) = 5e^{-t}$
(c) $A(t) = 10000 e^{0.05t}$
(d) $T(t) = 20 + 80e^{-t}$
(e) $v(t) = 9.8t$
Answer:
Question 4. Match the economic concept with the role of differential equations:
(i) Marginal Cost
(ii) Total Cost
(iii) Marginal Revenue
(iv) Total Revenue
(v) Profit
(a) Can be found by integrating Marginal Revenue
(b) Can be found by integrating Marginal Cost
(c) Derivative of Total Cost
(d) Derivative of Total Revenue
(e) Difference between Total Revenue and Total Cost
Answer:
Question 5. Match the phenomenon description with the corresponding differential equation structure:
(i) Rate of change proportional to the quantity.
(ii) Rate of change proportional to the quantity, plus a constant source/sink.
(iii) Rate of change proportional to the product of the quantity and its difference from a carrying capacity.
(iv) Rate of change of temperature difference proportional to the difference.
(v) Velocity change due to gravity and resistance proportional to velocity.
(a) $\frac{dy}{dt} = ky(M-y)$
(b) $\frac{dy}{dt} = ky$
(c) $\frac{dy}{dt} = ky + c$ (Linear DE)
(d) $\frac{dy}{dt} = -k(y-y_a)$
(e) $\frac{dv}{dt} = g - kv/m$ (Linear DE)
Answer: